49 research outputs found

    START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors

    Get PDF
    BACKGROUND: In animals, steroid hormones regulate gene expression by binding to nuclear receptors. Plants lack genes for nuclear receptors, yet genetic evidence from Arabidopsis suggests developmental roles for lipids/sterols analogous to those in animals. In contrast to nuclear receptors, the lipid/sterol-binding StAR-related lipid transfer (START) protein domains are conserved, making them candidates for involvement in both animal and plant lipid/sterol signal transduction. RESULTS: We surveyed putative START domains from the genomes of Arabidopsis, rice, animals, protists and bacteria. START domains are more common in plants than in animals and in plants are primarily found within homeodomain (HD) transcription factors. The largest subfamily of HD-START proteins is characterized by an HD amino-terminal to a plant-specific leucine zipper with an internal loop, whereas in a smaller subfamily the HD precedes a classic leucine zipper. The START domains in plant HD-START proteins are not closely related to those of animals, implying collateral evolution to accommodate organism-specific lipids/sterols. Using crystal structures of mammalian START proteins, we show structural conservation of the mammalian phosphatidylcholine transfer protein (PCTP) START domain in plants, consistent with a common role in lipid transport and metabolism. We also describe putative START-domain proteins from bacteria and unicellular protists. CONCLUSIONS: The majority of START domains in plants belong to a novel class of putative lipid/sterol-binding transcription factors, the HD-START family, which is conserved across the plant kingdom. HD-START proteins are confined to plants, suggesting a mechanism by which lipid/sterol ligands can directly modulate transcription in plants

    5SRNAdb: an information resource for 5S ribosomal RNAs

    Get PDF
    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA–protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces

    Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein.</p> <p>In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets.</p> <p>Results</p> <p>We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By <it>in silico </it>analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively.</p> <p>In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected <it>Nicotiana benthamiana </it>leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved <it>in vivo </it>at the expected site.</p> <p>Conclusion</p> <p>The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.</p

    Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis

    Get PDF
    Domains in Arabidopsis proteins NRPE1 and SPT5-like, composed almost exclusively of repeated motifs in which only WG or GW sequences and an overall amino-acid preference are conserved, have been experimentally shown to bind multiple molecules of Argonaute (AGO) protein(s). Domain swapping between the WG/GW domains of NRPE1 and the human protein GW182 showed a conserved function. As classical sequence alignment methods are poorly-adapted to detect such weakly-conserved motifs, we have developed a tool to carry out a systematic analysis to identify genes potentially encoding AGO-binding GW/WG proteins. Here, we describe exhaustive analysis of the Arabidopsis genome for all regions potentially encoding proteins bearing WG/GW motifs and consider the possible role of some of them in AGO-dependent mechanisms. We identified 20 different candidate WG/GW genes, encoding proteins in which the predicted domains range from 92aa to 654aa. These mostly correspond to a limited number of families: RNA-binding proteins, transcription factors, glycine-rich proteins, translation initiation factors and known silencing-associated proteins such as SDE3. Recent studies have argued that the interaction between WG/GW-rich domains and AGO proteins is evolutionarily conserved. Here, we demonstrate by an in silico domain-swapping simulation between plant and mammalian WG/GW proteins that the biased amino-acid composition of the AGO-binding sites is conserved

    Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3' end of tRNA precursors

    Get PDF
    In eukaryotic cells tRNA synthesis is negatively regulated by the protein Maf1, conserved from yeast to humans. Maf1 from yeast Saccharomyces cerevisiae mediates repression of trna transcription when cells are transferred from medium with glucose to medium with glycerol, a non-fermentable carbon source. The strain with deleted gene encoding Maf1 (maf1Δ) is viable but accumulates tRNA precursors. In this study tRNA precursors were analysed by RNA-Seq and Northern hybridization in wild type strain and maf1Δ mutant grown in glucose medium or upon shift to repressive conditions. A negative effect of maf1Δ mutant on the addition of the auxiliary CCA nucleotides to the 3′ end of pre-tRNAs was observed in cells shifted to unfavourable growth conditions. This effectwas reduced by overexpression of the yeast CCA1 gene encoding ATP(CTP):tRNA nucleotidyltransferase. The CCA sequence at the 3′ end is important for export of tRNA precursors from the nucleus and essential for tRNA charging with amino acids. Data presented here indicate that CCA-addition to intron-containing end-processed tRNA precursors is a limiting step in tRNA maturation when there is no Maf1 mediated RNA polymerase III (Pol III) repression. The correlation between CCA synthesis and Pol III regulation by Maf1 could be important in coordination of tRNA transcription, processing and regulation of translation

    RNAcentral 2021: secondary structure integration, improved sequence search and new member databases

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and >18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for >13 million sequences, making RNAcentral the world's largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community

    RNAcentral 2021: secondary structure integration, improved sequence search and new member databases.

    Get PDF
    RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences that provides a single access point to 44 RNA resources and >18 million ncRNA sequences from a wide range of organisms and RNA types. RNAcentral now also includes secondary (2D) structure information for >13 million sequences, making RNAcentral the world's largest RNA 2D structure database. The 2D diagrams are displayed using R2DT, a new 2D structure visualization method that uses consistent, reproducible and recognizable layouts for related RNAs. The sequence similarity search has been updated with a faster interface featuring facets for filtering search results by RNA type, organism, source database or any keyword. This sequence search tool is available as a reusable web component, and has been integrated into several RNAcentral member databases, including Rfam, miRBase and snoDB. To allow for a more fine-grained assignment of RNA types and subtypes, all RNAcentral sequences have been annotated with Sequence Ontology terms. The RNAcentral database continues to grow and provide a central data resource for the RNA community. RNAcentral is freely available at https://rnacentral.org
    corecore